Categorias
Inteligência Artificial

A IA E O FUTURO DOS NEGÓCIOS 

Por: Fernando Domingues – Utech, Brasil

A inteligência artificial (IA) está a ocupar o centro das preocupações dos executivos que revelam a necessidade de a perceber na sua potencialidade e também nos seus riscos associados à sua adoção nas empresas. 

IA negócios - Tecnologia inteligência artificial olisipo

Segundo a pesquisa Global CEO Survey 2024 da PwC, 97% dos CEOs relataram ter tomado medidas nos últimos 5 anos para mudar a forma como criam, entregam e capturam valor, em grande parte devido à disrupção tecnológica impulsionada pela IA, além das mudanças climáticas e outras megatendências globais. O desconforto com as mudanças é grande e 45% dos participantes duvidam que, na trajetória atual, suas empresas permanecerão viáveis além da próxima década. 

De acordo com outra pesquisa, a BCG AI Radar 2024 com 1406 executivos de 50 paises, 71% deles planeiam aumentar os investimentos em tecnologia em 2024, priorizando a IA e a IA generativa. No entanto, apesar do alto interesse, a maioria das organizações ainda não está conseguindo tirar o máximo proveito dessas tecnologias disruptivas. 

A pesquisa da BCG revela que 66% dos executivos estão insatisfeitos com o progresso em IA até o momento, sendo as principais razões a insuficiência de talentos qualificados, a falta de clareza do roadmap para a adoção da IA e a ausência de estratégia clara de investimentos. Estes 3 aspetos são a base para o sucesso da adoção de IA, sendo que ganhar conhecimento dessas tecnologias e sua aplicabilidade é o ponto de partida para este processo. De acordo com a pesquisa, os executivos acreditam que 46% da força de trabalho das empresas precisará de treinamento em IA nos próximos três anos. A grande maioria (81%) acredita que a IA irá criar novas funções e exigirá um grande esforço de gerenciamento da mudança (74%). 

Os desafios são enormes, mas muitas empresas já estão a atuar para se posicionar neste cenário. Elas estão a usar IA para resolver problemas e aumentar a competitividade. Por exemplo, na pesquisa da PwC, dos que já adotaram a IA generativa, 75% dos CEOs apostam que irá impactar positivamente a confiança dos seus stakeholders e 89% preveem ganhos significativos na qualidade dos produtos e serviços nos próximos 12 meses. 

Be the change - IA negócios

A IA generativa em particular, tem potencial para causar grandes mudanças nos negócios. As empresas que estão a liderar este processo estão alinhando sua estratégia de IA generativa com as estratégias digitais e de IA, investindo no aperfeiçoamento de seus funcionários e incentivando a experimentação em suas organizações, com foco na identificação de casos de uso que possam ser ampliados. 

Alguns dos benefícios mais comuns da adoção da IA nas organizações são: 

Análise de big data

A IA permite extrair insights valiosos de grandes volumes de dados para melhorar processos, prever demandas e personalizar experiências.  

Automação de processos

A IA automatiza tarefas repetitivas, liberando funcionários para atividades mais estratégicas e criativas do seu trabalho e tem potencial de reduzir custos em até 30%, segundo a PwC.  

Chatbots e assistentes virtuais

Cerca de 70% das empresas usam esses sistemas, que melhoram a experiência do cliente e reduzem custos com atendimento. 

Detecção de fraudes

A IA identifica padrões suspeitos em transações financeiras com até 90% de precisão, segundo a Accenture. 

Manufatura inteligente

A IA permite que fábricas se adaptem em tempo real, melhorando a produtividade e a qualidade dos produtos. 

Aumento de vendas

A IA pode analisar os dados dos clientes para oferecer recomendações personalizadas de produtos, mensagens de marketing e conteúdos, melhorando a experiência do cliente e aumentando as vendas. 

Análises preditivas

A IA pode prever tendências futuras, o comportamento dos clientes e as flutuações do mercado, ajudando as empresas a tomar decisões proativas e a manterem-se à frente da concorrência. 

Os executivos percebem a possibilidade de atingir todos esses benefícios e, segundo os dados da pesquisa da BCG, 89% deles colocam a IA e a IA Generativa entre as três principais prioridades tecnológicas para 2024 e desses, 51% colocam-nas no topo da sua lista (a cibersegurança e a computação em nuvem são as outras duas principais prioridades). 

O facto é que qualquer empresa hoje, independente de seu porte, não pode ficar alheia a estas tecnologias que estão a provocar grandes mudanças no mundo corporativo. Investir na qualificação de seu pessoal e construir uma estratégia de como incorporar a IA no dia a dia dos seus negócios passou a ser vital para a sobrevivência e o futuro da organização. 

Neste sentido, a Olisipo tem vindo a trabalhar para incluir no seu catálogo de formação uma maior oferta na área da Inteligência Artificial, trazendo agora formações especializadas no tema.

Categorias
Inteligência Artificial

O futuro do L&D: Como a IA está a revolucionar o desenvolvimento de talento

No panorama atual de constante e rápido desenvolvimento digital, a aprendizagem e desenvolvimento contínuos são vitais para que tanto indivíduos como empresas se mantenham na linha da frente. De acordo com o Workplace Learning Report de 2022 do LinkedIn, “as oportunidades de aprendizagem e crescimento” são dos impulsionadores culturais mais bem avaliados em todo o mundo. Quanto mais avançamos na era da Inteligência Artificial, mais o futuro do Learning & Development (L&D) se prepara para um salto transformativo. As tecnologias de IA têm vindo a revolucionar a forma como adquirimos conhecimentos, melhoramos skills e aumentamos o crescimento profissional.

Vemos em baixo as possibilidades que a IA traz ao L&D e como é que vai transformar o futuro do learning no local de trabalho.

Aprendizagem personalizada com Inteligência Artificial

A IA permite experiências personalizadas de aprendizagem ao analisar vastas quantidades de dados, incluindo preferências, pontos fortes e áreas de melhoria dos estudantes. Ao tirar partido dos algoritmos de machine learning, a IA consegue entregar conteúdo personalizado, avaliações adaptadas e recomendações, assegurando-se que estes utilizadores recebem intervenções específicas de aprendizagem que se adequem às suas necessidades individuais. Esta personalização aumenta o “engagement“, a motivação e uma maior retenção de conhecimento, produzindo melhores resultados de aprendizagem.

Curadoria de conteúdo inteligente

Com a quantidade abundante de informação disponível, a IA consegue ajudar os profissionais de L&D a identificar conteúdo de aprendizagem relevante e de alta qualidade. Os algoritmos de IA conseguem navegar um vasto mar de recursos, currículos e plataformas online, até identificar os materiais mais valiosos e atualizados. Ao utilizar processamento de linguagem natural (NLP) e análise de sentimentos (sentiment analysis), a IA consegue também avaliar a qualidade de conteúdos gerados por utilizadores e produzir feedback em tempo real, permitindo aos estudantes o acesso a recursos credíveis e de confiança.

Learning Paths Adaptáveis

Os sistemas de aprendizagem que utilizam IA adaptável fazem um tracking do progresso dos estudantes e ajustam de forma dinâmica os learning paths baseados na performance individual de cada um, para além dos níveis de domínio das temáticas. Através de avaliação contínua e análise de dados, os algoritmos da IA conseguem identificar falhas de conhecimento e providenciar intervenções específicas e direcionadas, garantindo que os estudantes recebem o conteúdo e apoio certos nos momentos certos. Este approach adaptável optimiza a eficiência e eficácia da aprendizagem, dando assim aos estudantes a capacidade de progredir ao seu próprio ritmo, enquanto se focam nas áreas que precisam de maior atenção.

Realidade Virtual e Simulações

As tecnologias baseadas em IA como a realidade virtual e simuladores vieram revolucionar o learning experiencial.

Ciclo de Aprendizagem Experiencial (Baseado em Kolb, D. 1984. Experiential learning. Englewood Cliffs, New Jersey: Prentice Hall.) Fonte: https://www.researchgate.net

As simulações baseadas em VR criam ambientes imersivos onde os estudantes podem praticar cenários “do mundo real”, melhorando as suas skills e capacidades de tomada de decisão, num local seguro e controlado. Os algoritmos de IA dentro destas simulações podem providenciar feedback personalizado, identificar padrões de performance, e oferecer recomendações de melhoria, permitindo assim aos estudantes melhorar as suas capacidades de uma forma realista e envolvente.

Analytics e Insights de Aprendizagem

As ferramentas de analytics de aprendizagem com base em IA oferecem insights valiosos relativamente à eficácia das iniciativas de L&D. Ao analisar os dados dos estudantes, os algoritmos de IA conseguem gerar relatórios, visualizações e modelos preditivos bastante completos. Estes insights ajudam os profissionais de L&D a avaliar o impacto dos programas de aprendizagem, a identificar áreas de melhoria, e a tomar decisões baseadas em dados para criar melhores estratégias de L&D no futuro. A Inteligência Artificial no L&D permite também uma monitorização em tempo real do engagement dos estudantes e da satisfação dos mesmos, permitindo às organizações responder de forma rápida e criar intervenções personalizadas, que se traduz em melhores resultados.

Maior ROI

O potencial de um maior ROI (Return On Investment ou retorno de investimento) não é apenas provável, mas já tem mesmo vindo a ser uma realidade em organizações que usam a IA de forma eficiente. Ao criar rapidamente conteúdos customizados, os colaboradores destas empresas podem usufruir dos programas de aprendizagem de que necessitam quando necessitam deles, em vez do approach mais tradicional de “one size fits all“.

Desafios e riscos da Inteligência Artificial no L&D

Como em todas as adaptações a novas ferramentas e metodologias, existem erros, desafios e riscos. Vejamos alguns destes, quando aplicando a IA ao L&D:

Segurança e privacidade de dados

As organizações ainda sentem, com razão, algumas preocupações relativamente a colaboradores partilharem informações potencialmente confidenciais a ferramentas públicas como o ChatGPT. Mas, conforme as ferramentas de IA começam a ser monetizadas, podemos esperar que as mesmas comecem a ter também Contratos de Licenciamento (Enterprise License Agreements) em que uma instância da ferramenta pode ser acedida de forma privada por todos os colaboradores dentro da infraestrutura de TI de uma organização, eliminando o risco de leaks de dados.

Violação de direitos de autor e responsabilidade

Recentemente, a Getty Images processou uma ferramenta de IA generativa de criação de imagens, a Stable Diffusion, por usar a sua biblioteca de imagens bastante expansiva e com direitos de autor, para treinar o seu software. Este e outros casos que irão certamente surgir, irão criar um precedente de como é que as empresas de IA irão poder operar neste mercado. Ainda não se sabe como é que este caso irá afetar as empresas quando, por exemplo, um colaborador usar uma ferramenta de IA para gerar imagens que se parecem bastante com uma imagem da Getty Images, e usar as mesmas numa campanha de marketing ou apresentação interna. Até que estas questões tenham respostas claras, é melhor ter-se algumas precauções.

Informação incorreta

Neste momento, ainda não podemos confiar na IA para nos dar informação correta e confiável 100% das vezes. O próprio ChatGPT contém um aviso de “limitações” que informa que o mesmo “poderá ocasionalmente gerar informações incorretas. Assim sendo, qualquer informação produzida por IA deve ser sempre revista e analisada por profissionais experientes e conhecedores que estejam equipados para julgar a fidelidade da informação.

Garantir um uso ético da IA

As organizações deverão considerar escrever regras e procedimentos relativos à Inteligência Artificial que mencionem explicitamente quais áreas de trabalho estão disponíveis para o uso de IA, e quais estão fora dos limites. Existem também assuntos éticos a ter em conta, tais como:

  1. Viés: Os algoritmos de IA podem perpetuar e amplificar vieses existentes, baseando-se nos dados com que aprenderam. As organizações deverão trabalhar ativamente para reduzir o viés nos algoritmos de IA ao conduzir reviews regulares, testando para a existência desse viés, e ao implementar um processo rigoroso de verificação de factos;
  2. Perda de trabalho: O L&D à base de Inteligência Artificial e outras ferramentas emergentes conseguem praticamente automatizar certas tarefas e processos, o que pode levar ao receio (ou mesmo à realidade) da extinção de alguns postos de trabalho. As organizações deverão investir em programas de upskilling e reskilling para apoiar os colaboradores cujas funções poderão ser afetadas pela IA.

Em conclusão, o futuro do L&D vai continuar a sofrer profundas transformações, lideradas pela integração das tecnologias IA. Desde experiências de learning personalizadas à curadoria inteligente de conteúdos, não esquecendo os learning paths adaptáveis e as simulações imersivas. A Inteligência Artificial no L&D está a revolucionar a maneira como adquirimos conhecimentos e desenvolvemos skills. Ao abraçar o potencial da IA, as organizações conseguem desbloquear novas oportunidades de crescimento profissional, potenciar a inovação e cultivar a aprendizagem contínua. Conforme a IA continua a avançar, o futuro do L&D demonstra imensa promessa ao empoderar os seus indivíduos e ao moldar a força profissional de amanhã.

Está a ler este artigo porque procura de soluções para si ou para a sua empresa? Consulte a nossa oferta de Learning:

Categorias
Inovação Inteligência Artificial

9 novas (e existentes) carreiras em IT com Inteligência Artificial


Não há dúvidas que a IA (Inteligência Artificial) tem revolucionado o mundo das TI, abrindo novos caminhos para a inovação e transformação do mercado de trabalho. Conforme a IA vai ficando cada vez mais avançada, oportunidades interessantes de carreira em IT foram emergindo, e funções existentes dentro das TI foram começando a incorporar as tecnologias de IA.

Taxa de adoção da IA durante a COVID19 – Fonte: KPMG

Vamos então explorar algumas das novas carreiras em IT que surgiram, bem como algumas das que têm mais a ganhar com a incorporação da IA no seu dia-a-dia:

Novas carreiras de IT criadas pela IA

Fonte: Getty Images

AI Prompt Engineer

Os famosos prompt engineers são experts em perguntar aos chatbots de IA – que funcionam com base em grandes modelos de linguagem – questões que produzam as respostas desejadas. Ao contrário dos engenheiros tradicionais que escrevem código, os prompt engineers escrevem prosa para testar os sistemas de IA em busca de peculiaridades; experts em IA generativa contaram ao Washington Post que esta nova função é particularmente importante para desenvolver e melhorar os modelos de interação entre humanos e máquinas.

À medida que as ferramentas IA evoluem, os prompt engineers vão estar cá para nos ajudar a assegurar-nos que os chatbots são rigorosamente testados, que as suas respostas são reprodutíveis e que os protocolos de segurança são devidamente seguidos. Para além disso, são eles a linha de defesa contra a desinformação e o viés que naturalmente surgiram e muitas vezes são difíceis de identificar pelos utilizadores.

Fonte: CNN via research.aimultiple.com/ai-consulting/

Consultores de IA

Como as IA se continuam a expandir para todo o tipo de indústrias para além das TI, os consultores de IA têm um papel importante em guiar as organizações no seu processo de implementação de IA. Estes profissionais possuem uma forte compreensão das tecnologias, tendências da indústria, bem como melhores práticas. Trabalham em conjunto com as empresas para identificar oportunidades de IA, desenvolver estratégias e partilhar conhecimentos expert sobre implementação de IA, garantindo que as organizações conseguem maximizar o potencial de IA para alcançar os seus objetivos.

Approach de IA fiável da IBM. Fonte: IBM

AI Ethics Officer

Com a crescente penetração das tecnologias IA no mercado, é cada vez mais difícil e consequentemente mais importante assegurar práticas éticas e responsáveis. Os Ethics Officers desempenham um papel vital em guiar as organizações em direção a sistemas de IA que sejam justos, transparentes e imparciais. Estes profissionais identificam potenciais riscos de ética, desenvolvem guidelines e procedimentos de ética, e asseguram-se que estas normas são seguidas, através de regulamentações dentro das organizações. Os Ethics Officers ajudam assim as organizações a navegar o panorama complexo da ética, e a ganhar uma maior confiança nas tecnologias IA.

Arquitetos de infraestruturas de IA

Os arquitetos de infraestruturas de IA focam-se no design e implementação de infraestruturas tecnológicas necessárias para os sistemas de IA. São responsáveis por instalar plataformas IA escaláveis e eficientes, selecionando o hardware e software apropriados, e assegurando suficiente armazenamento de dados e capacidade de de processamento. Estes profissionais colaboram com os engenheiros de IA e Data Scientists para criar ambientes optimizados para o desenvolvimento e implementação de IA.

Carreiras de IT que vão beneficiar ao integrar a IA no seu dia-a-dia

Fonte: Unsplash

Software Engineer

Um@ software engineer pode integrar a IA e melhorar a sua performance e vida profissional de várias formas: Podem tirar partido da IA para automatizar tarefas repetitivas e demoradas. Ao desenvolver scripts baseados em IA ou ao utilizar ferramentas IA, estes profissionais conseguem automatizar processos de geração de código, testing e debugging, libertando assim tempo para aplicar a outros aspetos mais estratégicos e criativos do seu trabalho.

A IA pode auxiliar também na melhoria da qualidade do código: com técnicas de machine learning, os modelos de IA conseguem analisar padrões de código, identificar potenciais bugs e otimizar a performance do código. Ao incorporar ferramentas IA de análise de código no seu workflow, os software engineers passam a receber sugestões inteligentes, detecção de erros em tempo real, e recomendações de otimização de performance, resultando em soluções de software melhores e mais eficientes.

Fonte: tycoonsuccess.com

Data Scientist

Os Data Scientists há muito que são players essenciais no campo das TI, mas com a emergência da IA, o seu papel evoluiu, bem como a necessidade de incorporar técnicas de IA no seu dia-a-dia. Os Data Scientists podem tirar partido dos algoritmos de Inteligência Artificial e dos modelos de machine learning para extrair insights de grandes quantidades de dados, possibilitando às organizações a tomada de decisões informadas. Estes profissionais analizam dados, desenvolvem modelos de previsão, e identificam padrões e tendências, tudo isto de forma mais eficiente graças à IA, o que leva a uma maior inovação e optimização das estratégias de negócio.

Product Manager

Fonte: emerj.com

Com uma enormíssima procura de produtos e serviços baseados em IA, os Product Managers de IA têm ganho uma incrível proeminência. Estes profissionais são a ponte entre a tecnologia e o negócio, compreendendo as necessidades do mercado e do cliente, e traduzindo as mesmas em requisitos de produtos de IA. Colaboram com equipas multifuncionais, incluindo engenheiros de IA e Data Scientists, para definir a visão do produto, priorizar características e assegurar lançamentos de produto com sucesso.

Fonte: ismguide.com

Big Data Engineer / Architect

Um@ Big Data Engineer ou Big Data Architect pode integrar a IA no seu dia-a-dia profissional de variadas formas: Pode tirar partido das técnicas de IA de processamento e limpeza de dados, reduzindo o esforço manual normalmente requerido para transformar e preparar grandes datasets para análise. Os algoritmos de IA podem ajudar a automatizar tarefas como a normalização de dados, detecção de outliers, e imputação de valores ausentes (missing value imputation), assegurando assim uma maior qualidade de dados para análise.

Para além disso, a IA pode ser usada para melhorar a eficiência e precisão da análise de dados. Os Big Data Engineers/Architects podem desenvolver e lançar modelos de IA que lidem com tarefas complexas de análise de dados, tais como modelos de previsão, detecção de anomalias, e reconhecimento de padrões. Estes modelos de IA podem revelar insights valiosos de quantidades vastas de dados, permitindo tomada de decisões baseadas em dados, e melhorando o processo geral de análise de dados.

Por último, a IA pode ajudar estes profissionais de Big Data a otimizar a armazenagem e recuperação de dados. Ao tirar partido dos algoritmos de IA, podem-se desenhar e implementar mecanismos inteligentes de armazenamento e recuperação de dados que priorizem dados mais frequentemente acedidos, otimizem a execução de queries, e melhorem a performance geral do sistema. Esta integração com IA ajuda a que se cheguem rapidamente a soluções de processamento e análise de dados mais eficientes e eficazes.

Fonte: linkedin.com

UX/UI & Graphic Designers

Apesar de crescentes preocupações por parte de artistas e Designers, é possível tirar-se partido das ferramentas de IA a seu favor, e não apenas recear que as mesmas venham roubar o emprego a profissionais humanos. As novas ferramentas de IA generativa da Adobe incluem, por exemplo, a capacidade de criação e recorte de imagens através de prompts (por exemplo, passar uma imagem de um alce na floresta, para uma paisagem citadina), ou preencher espaços vazios para expandir imagens, entre muitas outras. No entanto, tanto as opiniões das grandes empresas como da própria Adobe nos levam a crer que estas ferramentas foram feitas para melhorar a vida dos designers e profissionais da área, e não para os substituir. As ferramentas de IA vêm permitir aos designers automatizar certas tarefas repetitivas e principalmente tarefas demoradas, gerar opções alternativas de design, receber recomendações criativas inteligentes, fazer streamline do seu workflow, e potenciar a produtividade. Para além disso, certos dados analíticos permitem a estes designers ganhar certos insights sobre o comportamento dos utilizadores, as suas preferências e necessidades, dando-lhes a oportunidade de criar experiências ainda mais personalizadas e centradas no utilizador. Utilizando a IA, os designers podem melhorar a sua eficiência, criatividade e resultados no geral.

O rápido desenvolvimento da IA tem transformado o campo das TI, criando uma quantidade inacreditável de oportunidades de carreira. Desde Engenheiros de IA e Data Scientists a Consultores de IA e Product Managers de IA, os profissionais da indústria de IT têm vindo a abraçar cada vez mais as tecnologias de IA para para impulsionar a inovação e resolver desafios complexos. Com a IA a continuar a evoluir, novos papéis vão surgir, e papéis existentes vão continuar a ser obrigados a uma constante evolução e adaptação, tornando este campo de IT num domínio dinâmico e promissor para todos aqueles interessados em moldar o futuro através da IA.

Categorias
Inovação Inteligência Artificial

Programar em IA: Escolher as melhores linguagens & ferramentas

A Inteligência Artificial (IA) tem vindo a revolucionar várias indústrias, da saúde à banca, e programar tem um papel importantíssimo na implementação de aplicações IA. Quer sejas um novato ou um developer experenciado, à procura de explorar o mundo da IA, escolher as linguagens de programação e ferramentas corretas é essencial. Em baixo, vamos identificar as linguagens de programação mais populares para o desenvolvimento de IA, as suas características principais, e outras considerações importantes.

 Python

Python

Python é geralmente considerada uma das linguagens mais populares para programação IA. A sua simplicidade, facilidade de leitura e bibliotecas extensas fazem dela uma ótima escolha. Python oferece frameworks poderosos como TensorFlow e PyTorch, que simplificam o desenvolvimento e a implementação do modelo IA. Para além disso, bibliotecas como NumPy e Pandas providenciam dados de manipulação e capacidades de análise extremamente eficientes, que são essenciais para tarefas IA.

Melhores linguagens IA - R

R

R é outra linguagem normalmente usada em IA, particularmente em modelos estatísticos e análise de dados. Oferece uma vasta coleção de pacotes desenhados especificamente para tarefas de machine learning e data science. A sintaxe da linguagem R é intuitiva e permite uma fácil exploração e visualização dos dados, tornando-se assim bastante adequada para modelos estatísticos e análise preditiva.

Java

Java

Java é uma linguagem versátil usada num variado leque de aplicações, incluindo o desenvolvimento IA. Embora não seja uma das primeiras escolhas para IA devido à sua verbosidade, a linguagem Java oferece robustez, independência de plataforma e escalabilidade, sendo uma boa opção para sistemas IA de grande escala. As bibliotecas de Java como Deeplearning4j e DL4J incluem ferramentas para deep learning e redes neurais artificiais.

Melhores linguagens IA - C++

C++

C++ é uma linguagem poderosa e eficiente, bastante usada em IA, especialmente para aplicações pesadas a nível de desempenho. O seu controlo e a sua rapidez de baixo nível tornam-na ideal para a implementação de algoritmos e optimização de código. As bibliotecas mais populares como OpenCV e CUDA aproveitam o melhor da linguagem C++ aplicada à visão computacional e programação GPU, respetivamente.

Matlab

MATLAB

MATLAB é uma linguagem de programação comumente usada nos campos científico e de engenharia, incluindo IA. Oferece um rico conjunto de funções e toolboxes embutidas para análise de dados, visualização de dados e machine learning. As capacidades matemáticas avançadas da linguagem MATLAB tornam-na particularmente útil para o desenvolvimento de algoritmos e protótipos.

Outras considerações

Para além das linguagens de programação, existem outros fatores a ter em consideração no desenvolvimento IA:

Frameworks:

Considera utilizar frameworks AI populares como TensorFlow, PyTorch, ou scikit-learn, que oferecem funções pré-feitas e APIs para um eficiente desenvolvimento de modelos IA.

Preparação de dados

A limpeza e o pré-processamento são passos cruciais em IA. As bibliotecas como Pandas e scikit-learn dispõem de ferramentas para a manipulação de dados, feature engineering e normalização de dados.

Seleção de algoritmos

É importante compreender os diferentes algoritmos de IA, tal como as redes neurais artificiais, árvores de decisão e máquina de vetores de suporte, para conseguir escolher o approach mais sustentável para o teu problema específico.

Desenvolvimento colaborativo

Tira partido de sistemas de controlo de versão como o git e de plataformas colaborativas como o GitHub para facilitar a colaboração em equipa e a gestão de código.

Melhores linguagens de IA - Ferramentas: git & GitGub
git & GitGub

Em conclusão, a programação está no núcleo do desenvolvimento em IA e escolher a linguagem e ferramenta certas é essencial para o sucesso. Python, R, Java, C++ e MATLAB são linguagens populares, utilizadas para diferentes domínios em IA.

Paralelamente, frameworks, técnicas de preparação de dados, seleção de algoritmos e ferramentas de colaboração têm um papel fulcral na construção de sistemas de IA eficientes. Ao tirar partido das linguagens e ferramentas mais apropriadas, os developers conseguem desbloquear o imenso potencial da IA e criar soluções inovadoras em virtualmente qualquer indústria.