Programar em IA: Escolher as melhores linguagens & ferramentas

Tempo de Leitura: 4 minutos

A Inteligência Artificial (IA) tem vindo a revolucionar várias indústrias, da saúde à banca, e programar tem um papel importantíssimo na implementação de aplicações IA. Quer sejas um novato ou um developer experenciado, à procura de explorar o mundo da IA, escolher as linguagens de programação e ferramentas corretas é essencial. Em baixo, vamos identificar as linguagens de programação mais populares para o desenvolvimento de IA, as suas características principais, e outras considerações importantes.

 Python

Python

Python é geralmente considerada uma das linguagens mais populares para programação IA. A sua simplicidade, facilidade de leitura e bibliotecas extensas fazem dela uma ótima escolha. Python oferece frameworks poderosos como TensorFlow e PyTorch, que simplificam o desenvolvimento e a implementação do modelo IA. Para além disso, bibliotecas como NumPy e Pandas providenciam dados de manipulação e capacidades de análise extremamente eficientes, que são essenciais para tarefas IA.

Melhores linguagens IA - R

R

R é outra linguagem normalmente usada em IA, particularmente em modelos estatísticos e análise de dados. Oferece uma vasta coleção de pacotes desenhados especificamente para tarefas de machine learning e data science. A sintaxe da linguagem R é intuitiva e permite uma fácil exploração e visualização dos dados, tornando-se assim bastante adequada para modelos estatísticos e análise preditiva.

Java

Java

Java é uma linguagem versátil usada num variado leque de aplicações, incluindo o desenvolvimento IA. Embora não seja uma das primeiras escolhas para IA devido à sua verbosidade, a linguagem Java oferece robustez, independência de plataforma e escalabilidade, sendo uma boa opção para sistemas IA de grande escala. As bibliotecas de Java como Deeplearning4j e DL4J incluem ferramentas para deep learning e redes neurais artificiais.

Melhores linguagens IA - C++

C++

C++ é uma linguagem poderosa e eficiente, bastante usada em IA, especialmente para aplicações pesadas a nível de desempenho. O seu controlo e a sua rapidez de baixo nível tornam-na ideal para a implementação de algoritmos e optimização de código. As bibliotecas mais populares como OpenCV e CUDA aproveitam o melhor da linguagem C++ aplicada à visão computacional e programação GPU, respetivamente.

Matlab

MATLAB

MATLAB é uma linguagem de programação comumente usada nos campos científico e de engenharia, incluindo IA. Oferece um rico conjunto de funções e toolboxes embutidas para análise de dados, visualização de dados e machine learning. As capacidades matemáticas avançadas da linguagem MATLAB tornam-na particularmente útil para o desenvolvimento de algoritmos e protótipos.

Outras considerações

Para além das linguagens de programação, existem outros fatores a ter em consideração no desenvolvimento IA:

Frameworks:

Considera utilizar frameworks AI populares como TensorFlow, PyTorch, ou scikit-learn, que oferecem funções pré-feitas e APIs para um eficiente desenvolvimento de modelos IA.

Preparação de dados

A limpeza e o pré-processamento são passos cruciais em IA. As bibliotecas como Pandas e scikit-learn dispõem de ferramentas para a manipulação de dados, feature engineering e normalização de dados.

Seleção de algoritmos

É importante compreender os diferentes algoritmos de IA, tal como as redes neurais artificiais, árvores de decisão e máquina de vetores de suporte, para conseguir escolher o approach mais sustentável para o teu problema específico.

Desenvolvimento colaborativo

Tira partido de sistemas de controlo de versão como o git e de plataformas colaborativas como o GitHub para facilitar a colaboração em equipa e a gestão de código.

Melhores linguagens de IA - Ferramentas: git & GitGub
git & GitGub

Em conclusão, a programação está no núcleo do desenvolvimento em IA e escolher a linguagem e ferramenta certas é essencial para o sucesso. Python, R, Java, C++ e MATLAB são linguagens populares, utilizadas para diferentes domínios em IA.

Paralelamente, frameworks, técnicas de preparação de dados, seleção de algoritmos e ferramentas de colaboração têm um papel fulcral na construção de sistemas de IA eficientes. Ao tirar partido das linguagens e ferramentas mais apropriadas, os developers conseguem desbloquear o imenso potencial da IA e criar soluções inovadoras em virtualmente qualquer indústria.

Partilha-me!

Subscreve a newsletter semanal com os melhores conteúdos

Read on...

Está na hora de dares um salto na tua carreira?

iT's 29 years accelerating careers and still new in town!

Key reading jobs

Disponível para novos projetos?

Envia-nos a tua candidatura!

Preferes escrever-nos um email? Envia a tua candidatura para: recrutamento@olisipo.pt