Categorias
Cibersegurança Inovação

Edge Computing: Vantagens e desafios

Até há relativamente pouco tempo não sentíamos a necessidade de nos questionar: de quanta potência informática precisamos no edge computing? Quando as redes não precisavam de ser inteligentes, esta questão nem era particularmente relevante. Tudo isto mudou, uma vez que agora é possível mover quantidades consideráveis de poder informático diretamente para a borda da rede.

Fonte: https://innovationatwork.ieee.org/

As vantagens

Tal como acontece no mundo físico, quando os dados percorrem distâncias mais curtas, o tempo de resposta diminui. Quando as funções de computação, armazenamento e rede são fornecidas na extremidade da rede, isto resulta em latências mais baixas para aplicações e utilizadores.

Latência reduzida

O edge computing inclui o processamento e análise de dados mais perto da fonte onde estes foram gerados, tal como dispositivos IoT, em vez de enviar esses mesmos dados para uma nuvem centralizada para análise. Este approach reduz a latência e aumenta a velocidade de processamento de informação, essencial para aplicações que requerem respostas em tempo real, como veículos autónomos, automação industrial, e cidades inteligentes (smart cities).

Maior segurança na cloud

A segurança do armazenamento de dados baseada em cloud tem avançado dramaticamente em anos recentes, e continuará a melhorar. Para além disso, o edge computing significa que menos dados estão centralizados no armazenamento da cloud. Ao processar e armazenar alguns dos dados numa rede edge, a situação de ter “todos os ovos no mesmo cesto” é minimizada — a edge filtra dados que sejam redundantes, estranhos ou desnecessários. Apenas a informação mais crítica e importante é enviada para a cloud.

Redução de largura de banda

Tal como o edge computing ajuda a reduzir a latência, também consegue reduzir a largura de banda. Como estamos a processar, analisar e armazenar localmente mais informação, é menor a informação que estamos a enviar para a cloud. Esta redução em flow de dados (data flow) minimiza custos para o utilizador, visto que uma menor largura de banda significa upgrades menos frequentes ao armazenamento da cloud.

Envolvimento de machine learning & AI

O edge computing está a despoletar também o desenvolvimento de novas tecnologias como a edge AI (de Inteligência Artificial) e edge analytics. A edge AI envolve lançar modelos de machine learning em dispositivos edge, permitindo processamento de dados e tomada de decisão em tempo real, imprescindíveis para aplicações como veículos autónomos e drones, onde o processamento de informação tem de ser feito rápida e corretamente.

A edge analytics inclui o processamento de dados na borda da rede para gerar insights em tempo real, que podem ser usados para melhorar a eficiência operacional, e reduzir o tempo de paragem. Este approach é essencial para aplicações de manutenção preventiva, onde uma rápida detecção de potenciais falhas pode prevenir custos elevados de paragem e danos em equipamentos

Os desafios

No entanto, apesar de ser altamente promissor, este modelo apresenta ao mesmo tempo alguns problemas que não podem ser ignorados quando se trata de computação de ponta. Em certos cenários, continua ainda a fazer sentido optar por uma arquitetura de rede convencional:

Poder de processamento e capacidade de armazenamento limitados

Os dispositivos edge têm normalmente um poder de processamento e capacidade de armazenamento algo limitados, em comparação com centro de dados centralizados. Isto pode resultar em performance reduzida e tempos de resposta mais lentos para certas aplicações.

Questões de segurança

Assim como existem benefícios de segurança a nível da cloud, existem desafios de segurança a nível local. Os dispositivos edge encontram-se normalmente em espaços públicos ou localizações remotas, fazendo com que se tornem vulneráveis a ataques físicos ou cibernéticos. Assegurar a segurança destes dispositivos e os dados por eles recolhidos pode ser desafiante, especialmente se não estão bem protegidos.

Falta de estandardização

Neste momento, nao existe um approach estandardizado ao edge computing, o que significa que diferentes dispositivos e sistemas podem não conseguir comunicar uns com os outros. Isto pode levar a problema de compatibilidade e limitar a capacidade das organizações de aproveitar os benefícios do edge computing.

Criação de redundância

Num modelo de edge computing, um grande cluster central é trocado por muitas máquinas locais. Uma máquina de arestas substitui uma instância do aglomerado central. Porém, o modelo vai criando com frequência novas redundâncias que aumentam os custos – por exemplo, quando toca ao armazenamento, em vez de criar uma cópia central de cada ficheiro, uma rede edge pode manter uma cópia independente em cada nó de edge. No caso de pequenas redes edge, todas estas cópias adicionais podem criar redundância. Assim, com mais 100 nós de edge, é provável que o armazenamento seja cerca de 100 vezes mais caro. Isto pode ser limitado pelo armazenamento de dados apenas nos nós que são ativamente utilizados pelos utilizadores individuais – mas o problema da duplicação ainda não desaparece completamente. A certa altura, o custo disto começa a ter impacto no custo total.

Questões legais e de compliance

Em alguns países, o imposto sobre as vendas é cobrado sobre as compras online, noutros não. Além disso, nos EUA, por exemplo, existem regulamentos fiscais estatais individuais. Em muitos casos, os impostos aplicáveis dependem da localização física do hardware sobre o qual o processamento de dados é efetuado. A informática de ponta pode aumentar a confusão sobre quais as leis aplicáveis. Os impostos são uma questão complexa que as partes interessadas devem abordar antes de decidir utilizar a computação de ponta.

Proteção de dados

Tanto a localização dos utilizadores como a localização dos dados estão sujeitas às leis de proteção de dados. Alguns países são abrangidos pelo âmbito do GDPR, outros por outras estruturas. Existem também regulamentos como a HIPAA, que lidam especificamente com gestão de dados de dispositivos médicos. Para as empresas, isto significa que terão de analisar quais as leis e regulamentos que se aplicam aos respetivos nós de edge – e descobrir como assegurar o cumprimento dos mesmos. Isto é especialmente verdade quando os utilizadores e servidores estão localizados em diferentes países. Uma solução mais simples seria operar todos os nós de edge numa só jurisdição.

Em conclusão, a crescente relevância do edge computing está a revolucionar a maneira como pensamos sobre computação e processamento de dados. Resta analisar as vantagens e desvantagens, e perceber se esta é uma tecnologia relevante e benéfica para o nosso caso em particular.