Categorias
Inteligência Artificial

O futuro do L&D: Como a IA está a revolucionar o desenvolvimento de talento

No panorama atual de constante e rápido desenvolvimento digital, a aprendizagem e desenvolvimento contínuos são vitais para que tanto indivíduos como empresas se mantenham na linha da frente. De acordo com o Workplace Learning Report de 2022 do LinkedIn, “as oportunidades de aprendizagem e crescimento” são dos impulsionadores culturais mais bem avaliados em todo o mundo. Quanto mais avançamos na era da Inteligência Artificial, mais o futuro do Learning & Development (L&D) se prepara para um salto transformativo. As tecnologias de IA têm vindo a revolucionar a forma como adquirimos conhecimentos, melhoramos skills e aumentamos o crescimento profissional.

Vemos em baixo as possibilidades que a IA traz ao L&D e como é que vai transformar o futuro do learning no local de trabalho.

Aprendizagem personalizada com Inteligência Artificial

A IA permite experiências personalizadas de aprendizagem ao analisar vastas quantidades de dados, incluindo preferências, pontos fortes e áreas de melhoria dos estudantes. Ao tirar partido dos algoritmos de machine learning, a IA consegue entregar conteúdo personalizado, avaliações adaptadas e recomendações, assegurando-se que estes utilizadores recebem intervenções específicas de aprendizagem que se adequem às suas necessidades individuais. Esta personalização aumenta o “engagement“, a motivação e uma maior retenção de conhecimento, produzindo melhores resultados de aprendizagem.

Curadoria de conteúdo inteligente

Com a quantidade abundante de informação disponível, a IA consegue ajudar os profissionais de L&D a identificar conteúdo de aprendizagem relevante e de alta qualidade. Os algoritmos de IA conseguem navegar um vasto mar de recursos, currículos e plataformas online, até identificar os materiais mais valiosos e atualizados. Ao utilizar processamento de linguagem natural (NLP) e análise de sentimentos (sentiment analysis), a IA consegue também avaliar a qualidade de conteúdos gerados por utilizadores e produzir feedback em tempo real, permitindo aos estudantes o acesso a recursos credíveis e de confiança.

Learning Paths Adaptáveis

Os sistemas de aprendizagem que utilizam IA adaptável fazem um tracking do progresso dos estudantes e ajustam de forma dinâmica os learning paths baseados na performance individual de cada um, para além dos níveis de domínio das temáticas. Através de avaliação contínua e análise de dados, os algoritmos da IA conseguem identificar falhas de conhecimento e providenciar intervenções específicas e direcionadas, garantindo que os estudantes recebem o conteúdo e apoio certos nos momentos certos. Este approach adaptável optimiza a eficiência e eficácia da aprendizagem, dando assim aos estudantes a capacidade de progredir ao seu próprio ritmo, enquanto se focam nas áreas que precisam de maior atenção.

Realidade Virtual e Simulações

As tecnologias baseadas em IA como a realidade virtual e simuladores vieram revolucionar o learning experiencial.

Ciclo de Aprendizagem Experiencial (Baseado em Kolb, D. 1984. Experiential learning. Englewood Cliffs, New Jersey: Prentice Hall.) Fonte: https://www.researchgate.net

As simulações baseadas em VR criam ambientes imersivos onde os estudantes podem praticar cenários “do mundo real”, melhorando as suas skills e capacidades de tomada de decisão, num local seguro e controlado. Os algoritmos de IA dentro destas simulações podem providenciar feedback personalizado, identificar padrões de performance, e oferecer recomendações de melhoria, permitindo assim aos estudantes melhorar as suas capacidades de uma forma realista e envolvente.

Analytics e Insights de Aprendizagem

As ferramentas de analytics de aprendizagem com base em IA oferecem insights valiosos relativamente à eficácia das iniciativas de L&D. Ao analisar os dados dos estudantes, os algoritmos de IA conseguem gerar relatórios, visualizações e modelos preditivos bastante completos. Estes insights ajudam os profissionais de L&D a avaliar o impacto dos programas de aprendizagem, a identificar áreas de melhoria, e a tomar decisões baseadas em dados para criar melhores estratégias de L&D no futuro. A Inteligência Artificial no L&D permite também uma monitorização em tempo real do engagement dos estudantes e da satisfação dos mesmos, permitindo às organizações responder de forma rápida e criar intervenções personalizadas, que se traduz em melhores resultados.

Maior ROI

O potencial de um maior ROI (Return On Investment ou retorno de investimento) não é apenas provável, mas já tem mesmo vindo a ser uma realidade em organizações que usam a IA de forma eficiente. Ao criar rapidamente conteúdos customizados, os colaboradores destas empresas podem usufruir dos programas de aprendizagem de que necessitam quando necessitam deles, em vez do approach mais tradicional de “one size fits all“.

Desafios e riscos da Inteligência Artificial no L&D

Como em todas as adaptações a novas ferramentas e metodologias, existem erros, desafios e riscos. Vejamos alguns destes, quando aplicando a IA ao L&D:

Segurança e privacidade de dados

As organizações ainda sentem, com razão, algumas preocupações relativamente a colaboradores partilharem informações potencialmente confidenciais a ferramentas públicas como o ChatGPT. Mas, conforme as ferramentas de IA começam a ser monetizadas, podemos esperar que as mesmas comecem a ter também Contratos de Licenciamento (Enterprise License Agreements) em que uma instância da ferramenta pode ser acedida de forma privada por todos os colaboradores dentro da infraestrutura de TI de uma organização, eliminando o risco de leaks de dados.

Violação de direitos de autor e responsabilidade

Recentemente, a Getty Images processou uma ferramenta de IA generativa de criação de imagens, a Stable Diffusion, por usar a sua biblioteca de imagens bastante expansiva e com direitos de autor, para treinar o seu software. Este e outros casos que irão certamente surgir, irão criar um precedente de como é que as empresas de IA irão poder operar neste mercado. Ainda não se sabe como é que este caso irá afetar as empresas quando, por exemplo, um colaborador usar uma ferramenta de IA para gerar imagens que se parecem bastante com uma imagem da Getty Images, e usar as mesmas numa campanha de marketing ou apresentação interna. Até que estas questões tenham respostas claras, é melhor ter-se algumas precauções.

Informação incorreta

Neste momento, ainda não podemos confiar na IA para nos dar informação correta e confiável 100% das vezes. O próprio ChatGPT contém um aviso de “limitações” que informa que o mesmo “poderá ocasionalmente gerar informações incorretas. Assim sendo, qualquer informação produzida por IA deve ser sempre revista e analisada por profissionais experientes e conhecedores que estejam equipados para julgar a fidelidade da informação.

Garantir um uso ético da IA

As organizações deverão considerar escrever regras e procedimentos relativos à Inteligência Artificial que mencionem explicitamente quais áreas de trabalho estão disponíveis para o uso de IA, e quais estão fora dos limites. Existem também assuntos éticos a ter em conta, tais como:

  1. Viés: Os algoritmos de IA podem perpetuar e amplificar vieses existentes, baseando-se nos dados com que aprenderam. As organizações deverão trabalhar ativamente para reduzir o viés nos algoritmos de IA ao conduzir reviews regulares, testando para a existência desse viés, e ao implementar um processo rigoroso de verificação de factos;
  2. Perda de trabalho: O L&D à base de Inteligência Artificial e outras ferramentas emergentes conseguem praticamente automatizar certas tarefas e processos, o que pode levar ao receio (ou mesmo à realidade) da extinção de alguns postos de trabalho. As organizações deverão investir em programas de upskilling e reskilling para apoiar os colaboradores cujas funções poderão ser afetadas pela IA.

Em conclusão, o futuro do L&D vai continuar a sofrer profundas transformações, lideradas pela integração das tecnologias IA. Desde experiências de learning personalizadas à curadoria inteligente de conteúdos, não esquecendo os learning paths adaptáveis e as simulações imersivas. A Inteligência Artificial no L&D está a revolucionar a maneira como adquirimos conhecimentos e desenvolvemos skills. Ao abraçar o potencial da IA, as organizações conseguem desbloquear novas oportunidades de crescimento profissional, potenciar a inovação e cultivar a aprendizagem contínua. Conforme a IA continua a avançar, o futuro do L&D demonstra imensa promessa ao empoderar os seus indivíduos e ao moldar a força profissional de amanhã.

Está a ler este artigo porque procura de soluções para si ou para a sua empresa? Consulte a nossa oferta de Learning:

Categorias
Cibersegurança Inovação

Edge Computing: Vantagens e desafios

Até há relativamente pouco tempo não sentíamos a necessidade de nos questionar: de quanta potência informática precisamos no edge computing? Quando as redes não precisavam de ser inteligentes, esta questão nem era particularmente relevante. Tudo isto mudou, uma vez que agora é possível mover quantidades consideráveis de poder informático diretamente para a borda da rede.

Fonte: https://innovationatwork.ieee.org/

As vantagens

Tal como acontece no mundo físico, quando os dados percorrem distâncias mais curtas, o tempo de resposta diminui. Quando as funções de computação, armazenamento e rede são fornecidas na extremidade da rede, isto resulta em latências mais baixas para aplicações e utilizadores.

Latência reduzida

O edge computing inclui o processamento e análise de dados mais perto da fonte onde estes foram gerados, tal como dispositivos IoT, em vez de enviar esses mesmos dados para uma nuvem centralizada para análise. Este approach reduz a latência e aumenta a velocidade de processamento de informação, essencial para aplicações que requerem respostas em tempo real, como veículos autónomos, automação industrial, e cidades inteligentes (smart cities).

Maior segurança na cloud

A segurança do armazenamento de dados baseada em cloud tem avançado dramaticamente em anos recentes, e continuará a melhorar. Para além disso, o edge computing significa que menos dados estão centralizados no armazenamento da cloud. Ao processar e armazenar alguns dos dados numa rede edge, a situação de ter “todos os ovos no mesmo cesto” é minimizada — a edge filtra dados que sejam redundantes, estranhos ou desnecessários. Apenas a informação mais crítica e importante é enviada para a cloud.

Redução de largura de banda

Tal como o edge computing ajuda a reduzir a latência, também consegue reduzir a largura de banda. Como estamos a processar, analisar e armazenar localmente mais informação, é menor a informação que estamos a enviar para a cloud. Esta redução em flow de dados (data flow) minimiza custos para o utilizador, visto que uma menor largura de banda significa upgrades menos frequentes ao armazenamento da cloud.

Envolvimento de machine learning & AI

O edge computing está a despoletar também o desenvolvimento de novas tecnologias como a edge AI (de Inteligência Artificial) e edge analytics. A edge AI envolve lançar modelos de machine learning em dispositivos edge, permitindo processamento de dados e tomada de decisão em tempo real, imprescindíveis para aplicações como veículos autónomos e drones, onde o processamento de informação tem de ser feito rápida e corretamente.

A edge analytics inclui o processamento de dados na borda da rede para gerar insights em tempo real, que podem ser usados para melhorar a eficiência operacional, e reduzir o tempo de paragem. Este approach é essencial para aplicações de manutenção preventiva, onde uma rápida detecção de potenciais falhas pode prevenir custos elevados de paragem e danos em equipamentos

Os desafios

No entanto, apesar de ser altamente promissor, este modelo apresenta ao mesmo tempo alguns problemas que não podem ser ignorados quando se trata de computação de ponta. Em certos cenários, continua ainda a fazer sentido optar por uma arquitetura de rede convencional:

Poder de processamento e capacidade de armazenamento limitados

Os dispositivos edge têm normalmente um poder de processamento e capacidade de armazenamento algo limitados, em comparação com centro de dados centralizados. Isto pode resultar em performance reduzida e tempos de resposta mais lentos para certas aplicações.

Questões de segurança

Assim como existem benefícios de segurança a nível da cloud, existem desafios de segurança a nível local. Os dispositivos edge encontram-se normalmente em espaços públicos ou localizações remotas, fazendo com que se tornem vulneráveis a ataques físicos ou cibernéticos. Assegurar a segurança destes dispositivos e os dados por eles recolhidos pode ser desafiante, especialmente se não estão bem protegidos.

Falta de estandardização

Neste momento, nao existe um approach estandardizado ao edge computing, o que significa que diferentes dispositivos e sistemas podem não conseguir comunicar uns com os outros. Isto pode levar a problema de compatibilidade e limitar a capacidade das organizações de aproveitar os benefícios do edge computing.

Criação de redundância

Num modelo de edge computing, um grande cluster central é trocado por muitas máquinas locais. Uma máquina de arestas substitui uma instância do aglomerado central. Porém, o modelo vai criando com frequência novas redundâncias que aumentam os custos – por exemplo, quando toca ao armazenamento, em vez de criar uma cópia central de cada ficheiro, uma rede edge pode manter uma cópia independente em cada nó de edge. No caso de pequenas redes edge, todas estas cópias adicionais podem criar redundância. Assim, com mais 100 nós de edge, é provável que o armazenamento seja cerca de 100 vezes mais caro. Isto pode ser limitado pelo armazenamento de dados apenas nos nós que são ativamente utilizados pelos utilizadores individuais – mas o problema da duplicação ainda não desaparece completamente. A certa altura, o custo disto começa a ter impacto no custo total.

Questões legais e de compliance

Em alguns países, o imposto sobre as vendas é cobrado sobre as compras online, noutros não. Além disso, nos EUA, por exemplo, existem regulamentos fiscais estatais individuais. Em muitos casos, os impostos aplicáveis dependem da localização física do hardware sobre o qual o processamento de dados é efetuado. A informática de ponta pode aumentar a confusão sobre quais as leis aplicáveis. Os impostos são uma questão complexa que as partes interessadas devem abordar antes de decidir utilizar a computação de ponta.

Proteção de dados

Tanto a localização dos utilizadores como a localização dos dados estão sujeitas às leis de proteção de dados. Alguns países são abrangidos pelo âmbito do GDPR, outros por outras estruturas. Existem também regulamentos como a HIPAA, que lidam especificamente com gestão de dados de dispositivos médicos. Para as empresas, isto significa que terão de analisar quais as leis e regulamentos que se aplicam aos respetivos nós de edge – e descobrir como assegurar o cumprimento dos mesmos. Isto é especialmente verdade quando os utilizadores e servidores estão localizados em diferentes países. Uma solução mais simples seria operar todos os nós de edge numa só jurisdição.

Em conclusão, a crescente relevância do edge computing está a revolucionar a maneira como pensamos sobre computação e processamento de dados. Resta analisar as vantagens e desvantagens, e perceber se esta é uma tecnologia relevante e benéfica para o nosso caso em particular.

Categorias
Cibersegurança Formação Inovação

Será assim tão importante a transformação digital?

Short answer: sim. A transformação digital tem-se tornado numa absoluta necessidade para as empresas e negócios, para que se mantenham competitivos no mundo acelerado e em constante atualização em que vivemos. Esta transformação envolve utilizar a tecnologia para transformar processos de negócio, as experiências dos utilizadores e clientes, e ainda os modelos de negócio. Ao abraçar a transformação digital, as empresas podem ganhar vantagens competitivas, melhorar a sua eficiência, e providenciar um serviço melhor e mais personalizado.

A transformação digital é, sem dúvida, uma oportunidade para voltar a ver com outros olhos, reavaliar e aperfeiçoar o que uma empresa já oferece: como são realizados os processos de negócio, se e como o serviço é personalizado de forma coerente em todos os canais de interação, se e como as operações se podem tornar mais eficientes através da optimização e da automação de certos processos. Este processo de transformação digital permite que as empresas expandam a sua presença e alcancem novos públicos, por meio de modelos de negócio baseados em plataformas digitais.

Fases da transformação digital

Existem 6 fases da transformação digital, que as empresas devem seguir para transformar corretamente as suas operações:

1. Business as Usual

Nesta fase, as empresas ainda usam métodos mais tradicionais de operação e que ainda não adotaram tecnologias digitais. O foco é em manter o status quo em vez da inovação.

2. Present and Active

Na segunda fase, começam a adotar-se tecnologias digitais numa escala ainda reduzida. As empresas podem usar ferramentas digitais como as redes sociais ou a computação em cloud para melhorar a operação, mas o foco é ainda em manter o modelo de negócio.

3. Formalized

Nesta próxima fase, há a formalização dos esforços de transformação digital. As empresas poderão nesta altura criar uma estratégia digital, e alocar recursos a iniciativas digitais.

4. Strategic

Aqui, a transformação digital torna-se a prioridade estratégica do negócio. Iniciativas digitais são integradas na estratégia geral do negócio, e o foco é agora na inovação e crescimento.

5. Converged

Neste momento, a transformação digital está completamente integrada no negócio. A organização sofreu um “shift” cultural bastante grande, e as tecnologias digitais são agora usadas para suportar a inovação, a implementação de melhores experiências para os utilizadores, e para criar novos modelos de negócio.

6. Innovative and Adaptive

Na fase final, a organização está continuamente a adaptar-se a novas tecnologias, e constantemente a inovar. A transformação digital já não é uma iniciativa independente: já se embrenhou totalmente na cultura da empresa.

6 stages of digital transformation / as 6 fases da transformação digital
Fonte: www.aihr.com/

O setor de IT representa uma parte crucial na transformação digital nas empresas. Os profissionais de IT são por norma os responsáveis por selecionar e implementar as ferramentas e tecnologias que vão levar a esta transformação. Terão também de se certificar que a organização tem as infraestruturas necessárias para suportar as iniciativas digitais que se planeia fazer, e que a informação está guardada e gerida de forma eficiente.

Ferramentas ao auxílio da transformação digital

Existem inúmeras ferramentas e categorias de ferramentas que podem ser utilizadas no processo de transformação digital:

  1. Plataformas de computação em nuvem como Amazon Web Services (AWS), Microsoft Azure, & Google Cloud Platform (GCP) permitem às organizações armazenar, processar e analisar grandes quantidades de informação sem a necessidade de investir em hardware dispendioso;
  2. Plataformas de low-code como Appian, OutSystems, e Mendix permitem às organizações construir rapidamente aplicações customizadas às suas necessidades, sem precisar de conhecimentos avançados de programação;
  3. Softwares de Customer Relationship Management (CRM) como Salesforce e HubSpot providenciam um sistema centralizado para gerir informação e interações com clientes;
  4. Ferramentas de Business Intelligence (BI) e Analytics como Tableau, Power BI, e QlikView permitem às organizações analisar e visualizar informação em tempo real, ganhando “insights” importantes sobre a performance do negócio;
  5. Programas de Robotic Process Automation (RPA) como o Microsoft Power Automate, UiPath ou Automation Anywhere ajudam a automatizar tarefas rotineiras e repetitivas, libertando tempo aos profissionais, para que se possam focar em tarefas mais importantes;
  6. Ferramentas de Cibersegurança como firewalls, softwares antivírus, e sistemas de detecção de intrusos ajudam as organizações a proteger os seus assets digitais e prevenir ataques cibernéticos.

Em conclusão, a transformação digital é uma oportunidade para as empresas de criar novos e melhorados modelos de negócio e aproveitar novas oportunidades de mercado. No entanto, há que ter em conta que isso requer um planeamento atento, um investimento em tecnologia e talentos, acompanhamento próximo da execução, e a capacidade de gerir eventuais riscos e desafios que surjam ao longo do caminho.

Categorias
Inovação RH

A Inteligência Artificial como um aliado no recrutamento de TI

A inteligência artificial tem vindo a transformar o approach das empresas relativamente a muita coisa nos últimos meses (e anos), e o recrutamento em TI não fica de fora. Com uma crescente procura por profissionais de IT altamente qualificados, os recrutadores de TI sentem igualmente uma crescente pressão para encontrar e atrair profissionais de topo de forma rápida e eficiente. Felizmente, a IA pode ajudar a agilizar vários aspetos do processo de recrutamento, permitindo assim aos recrutadores focar-se na construção e manutenção de relações com os candidatos, e em tomar as melhores decisões estratégicas de recrutamento.

Inteligência Artificial Recrutamento IT - Os potenciais usos da IA podem ser aplicados a virtualmente qualquer fase do processo de recrutamento
Na imagem, podemos ver o potencial da IA em todas as fases do recrutamento. Fonte: aihr.com

“Work smarter, not harder”

Um dos maiores benefícios da Inteligência Artificial quando aplicada ao recrutamento, é a capacidade de automatizar tarefas demoradas, tal como a triagem de CVs, e o “match” entre candidatos e as vagas corretas. Em vez de navegar manualmente por centenas de currículos, as ferramentas de recrutamento que utilizam IA podem ajudar a analisar esses currículos e descrições de funções para identificar os candidatos mais qualificados para determinada vaga. Isto pode poupar uma quantidade significativa de tempo ao recrutador, permitindo-lhe mais dedicação a outras tarefas mais importantes e que requeiram mais atenção.

Alguns exemplos de ferramentas de triagem de candidatos são Pomato, Ceipal ou Textkernel. Estas ferramentas usam NLP (Natural Language Processing), deep learning, e machine learning para fazer uma triagem de currículos.

Enriquecer relações com candidatos

Outro benefício da Inteligência Artificial na optimização da vida do recrutador, é melhorar a experiência da relação com os candidatos. Certas ferramentas de chat que utilizam IA podem ser usadas para comunicar certas informações simples como updates no processo de recrutamento, permitindo que os candidatos estejam sempre informados e que se sintam menos “abandonados” no processo. Os chatbots podem também ajudar no agendamento de calls e entrevistas, no processo de follow-up com candidatos, que leva a uma experiência mais positiva no geral.

Calendly e X.AI são duas ferramentas que ajudam na seleção dos melhores slots horários para um agendamento de entrevistas mais eficiente.

Mya, Olivia, e Jobpal são 3 exemplos de chatbots que utilizam NLP (Natural Language Processing) e machine learning. Estes chatbots conseguem iniciar conversas com candidatos e executar uma pré-seleção. Estes bots são até capazes de, existindo já uma base de dados de apoio, iniciar uma cadeia de conversação com candidatos passivos para saber o seu potencial interesse numa vaga. Candidatos que estejam interessados podem também fazer uma pré-entrevista, respondendo a questões básicas ou avançadas, pré-definidas.

Tomada de decisões informadas

Para além de melhorar a relação e interação com candidatos, a Inteligência Artificial pode também ajudar os recrutadores a tomar decisões mais informadas. Ao analisar a informação de determinado candidato, as ferramentas de recrutamento de Inteligência Artificial podem ajudar a identificar padrões e tendências que poderão não ser imediatamente óbvios ao recrutador humano. Por exemplo, estas ferramentas podem ajudar a identificar candidatos mais propícios a ficar com um cliente a longo prazo, ou que se encaixem melhor a nível cultural. Isto leva a que se tomem decisões de recrutamento mais estratégicas e que a longo prazo se baixem taxas de turnover.

Um exemplo de uma ferramenta IA que ajuda a tomar decisões informadas é a HireVue. Esta ferramenta usa IA para analisar vídeos de entrevistas, incluindo expressões faciais, linguagem corporal e escolha de palavras para chegar a conclusões sobre as soft skills, personalidade e encaixe cultural de um candidato. A ferramenta faz também uso de NLP (Natural Language Processing) para analisar as respostas do candidato e criar um sumário das suas skills e qualificações. Isto ajuda a que o recrutador tome decisões baseadas em dados específicos, especialmente no caso de haver candidatos com perfis semelhantes e a escolha não seja óbvia.

Recrutamento mais proativo

A inteligência Artificial pode ainda ajudar os recrutadores de TI a serem mais proativos na sua procura por candidatos. Ao analisar atividade online e perfis de redes sociais, as ferramentas de recrutamento baseadas em IA podem ajudar a identificar mais rapidamente potenciais candidatos que não estejam ativamente à procura de novos desafios, mas que encaixem particularmente bem numa determinada vaga. Isto permite aos recrutadores chegar mais facilmente a candidatos que provavelmente não se teriam sequer candidatado à posição, o que aumenta também a lista de candidatos, e consequentemente, a probabilidade de encontrar a pessoa certa para aquela função.

A Fetcher, tal como o nome indica, “vai buscar” potenciais candidatos. É uma ferramenta que pesquisa e identifica candidatos através de “matches” de palavras-chave. Com algum tempo, a Inteligência Artificial aprende as preferências de uma empresa e melhora cada vez mais as suas capacidades de identificar o candidato certo.

“AI recruiting software will even learn what messaging used by the recruiter yielded the highest response with candidates. It will then automate these behaviors allowing recruiters to spend time on what matters most, relationships and revenue.”

-Leoforce blog

No geral, a Inteligência artificial demonstra um enorme potencial de vir a revolucionar a forma como os recrutadores de IT vêm e organizam o seu trabalho diariamente. Ao automatizar tarefas que consomem uma grande parte do seu tempo, ao melhorar a relação com candidatos, ao ajudar os recrutadores a tomar decisões mais informadas, a IA pode certamente ajudar os recrutadores de TI a encontrar e atrair talento altamente qualificado rápida e eficientemente. A procura por profissionais de TI não mostra sinais de abrandar, e a utilização deste tipo de ferramentas brevemente será uma realidade que poucos recrutadores poderão ignorar.

Categorias
Equipa RH

Meet The Team

Desde o primeiro dia, os colaboradores da Olisipo sabem que podem contar com uma equipa que os ajuda a encontrar o seu caminho, a identificar com a cultura da empresa e a transportar as suas carreiras até ao próximo nível.

Neste artigo agregamos todos os vídeos de apresentação da equipa de gestão da Olisipo. Damos a cara, com orgulho, por uma cultura empresarial que acredita na proximidade; confiança e felicidade das nossas pessoas.

Em constante atualização…

Categorias
Cursos Formação Inovação

8 segredos (não tão secretos) para a melhor Gestão de Projetos

A partir do momento que uma pequena empresa cresce e os seus projetos se tornam mais complexos e exigentes, querendo ou não, irá depender da Gestão de Projetos para manter os seus standards de qualidade e continuar a crescer.

Antes de enveredar pelo mundo da Gestão de Projetos, é necessário começar com um plano sólido, entender o que é, como funciona, e algumas das melhores práticas a aplicar. É aqui que nós entramos em ação. Temos 8 dicas essenciais para qualquer profissional (mesmo para quem não trabalha em Gestão de Projetos), que não são nenhum segredo de estado, mas que não devem ser postas de parte.

1. Começa com um plano

A Gestão de Projetos anda sempre à volta de planos e da sua implementação da forma mais fluida possível. Se enveredas pela Gestão de Projetos sem antes teres um plano definido, não interessa qual a ferramenta que utilizas – ou quão bem a utilizes. Sem um bom plano para começar, vai ser tudo muito, muito mais difícil.

Mesmo antes de começar a construir o projeto dentro de uma plataforma de gestão de projetos, já deves estar munid@ com um plano bastante completo que inclua de que se trata o projeto, qual o propósito que cumpre, quanto tempo vai demorar (e se há espaço de manobra para ir para além da data limite inicialmente estabelecida), quais os objetivos e como é que este projeto irá beneficiar a empresa e os clientes da mesma. Sem um plano que funcione, todo o processo pode e provavelmente vai ser desnecessariamente fatigante.

2. Comunica frequentemente com os principais stakeholders

Nada é mais eficiente num projeto (e na vida, já agora) do que uma boa comunicação. Certifica-te que implementas as ferramentas necessárias para que as equipas comuniquem sem problemas. Independentemente do software, é crucial que todos os membros sejam encorajados a manter todas as linhas de comunicação abertas para com o resto da equipa, dos managers e stakeholders.

A comunicação pode passar por um chat de servidor, e-mail, fórum ou qualquer tipo de plataforma (se bem que, mesmo com o passar dos tempos e a modernização das aplicações de reuniões virtuais, nada substitui verdadeiramente uma reunião e discussão presenciais), o mais importante é que os canais de comunicação se mantenham sempre abertos. Os Gestores de Projeto devem também estar sempre disponíveis e em contacto com os stakeholders, sem no entanto fazer demasiada pressão ou micromanagement.

3. Documenta os teus recursos

Recursos pode significar tudo desde membros da equipa, servidores, salas de reunião, etc. Uma coisa a ter em consideração é que normalmente não temos recursos ilimitados, e uma boa gestão daquilo que temos à disposição pode ser a chave para o sucesso de um projeto.

Quando tens uma documentação sólida de todos os recursos, tens sempre uma ideia bastante realista do que está a ser usado, como é que está a ser usado, e da forma mais eficiente de usar esses recursos. Deves também criar um “plano de recursos” para saber exatamente como usar cada recurso durante o ciclo de vida do projeto.

4. Monitoriza o volume de trabalho

A última coisa que queres fazer é sobrecarregar certos membros da equipa ou a equipa por inteiro. Tu e os teus Gestores de Projeto devem sempre ter o volume de trabalho do projeto sob controlo. Quando encontras um ou mais membros da equipa que têm mais trabalho do que deveriam, está na altura de redistribuir funções para evitar situações de burnout. Quando alguém chega ao ponto de burnout, já é demasiado tarde e o próprio projeto pode ser fortemente afetado. Ao te precaveres contra estas situações, poupas a equipa e o projeto ao mesmo tempo.

5. Implementa Gestão do Risco

O risco está em todas as partes, e é preciso algum esforço para o gerir. Implementar gestão do risco significa que estás sempre preparad@ para o pior, mesmo que nunca suceda. Para fazer esta gestão de forma eficiente, deves criar uma equipa de resposta ao risco, identificar todos os possíveis riscos envolvidos com o projeto, uma completa análise de risco, atribuir uma pessoa responsável para cada risco, e estar preparad@ para dar os passos necessários para lidar com cada risco, caso aconteça.

6. Evita ir mais longe do que o planeado

Por vezes, é tentador em alguma fase do ciclo de vida do projeto ir além das fronteiras do mesmo. Podes ter encontrado entretanto um novo atributo ou função que poderia ser necessária. Apesar disso, não planeaste a inclusão desse atributo, e tentar adicioná-lo a meio do projeto pode colocar em risco o sucesso de todo o projeto.

Ao invés de adicionar algo a meio do processo, considera essa adição para uma edição futura deste mesmo projeto, ou mesmo como um add-on a ser adicionado depois da conclusão do projeto. O mais seguro é manteres-te com o teu plano original, e certificares-te do seu sucesso em vez de aplicar riscos desnecessários.

7. Reúne com frequência (mas com brevidade)

Considera organizar pequenas reuniões “stand-up” semanais ou diárias com toda a equipa, para te certificares que estão todos na mesma página. Estas reuniões devem ser breves e assertivas. Não te desvies do tópico em questão e não mantenhas as pessoas mais tempo que o necessário, senão vai tornar-se fastidioso para toda a gente envolvida. O ideal é chegar, dizer aquilo que precisa ser dito, ouvir os outros, e terminar. É só isso.

8. Documenta tudo

Algo que algumas pessoas descartam mas que faz toda a diferença, é documentar. Não só deves manter documentação detalhada sobre o que quer que seja que construas/cries, mas deves também documentar tudo sobre o projeto em si e o desenvolvimento de todas as suas fases. Regista quem fez o quê, como e quando, basicamente anota todos os aspetos do projeto que te lembres. Quanto mais documentação existir, mais eficiente será o projeto, e mais facilmente serás capaz de repetir um projeto com sucesso no futuro.

Those who plan do better than those who do not plan, even though they rarely stick to their plan.”

Winston Churchill

PS: Sabias que a Olisipo tem uma categoria de formações focadas em Gestão de Projetos? Se estas oito dicas te abriram o apetite para este mundo, não te deixes ficar por aqui, e dá já o primeiro passo na tua carreira de (provável) sucesso connosco.