Categorias
Cibersegurança Inovação

Edge Computing: Vantagens e desafios

Até há relativamente pouco tempo não sentíamos a necessidade de nos questionar: de quanta potência informática precisamos no edge computing? Quando as redes não precisavam de ser inteligentes, esta questão nem era particularmente relevante. Tudo isto mudou, uma vez que agora é possível mover quantidades consideráveis de poder informático diretamente para a borda da rede.

Fonte: https://innovationatwork.ieee.org/

As vantagens

Tal como acontece no mundo físico, quando os dados percorrem distâncias mais curtas, o tempo de resposta diminui. Quando as funções de computação, armazenamento e rede são fornecidas na extremidade da rede, isto resulta em latências mais baixas para aplicações e utilizadores.

Latência reduzida

O edge computing inclui o processamento e análise de dados mais perto da fonte onde estes foram gerados, tal como dispositivos IoT, em vez de enviar esses mesmos dados para uma nuvem centralizada para análise. Este approach reduz a latência e aumenta a velocidade de processamento de informação, essencial para aplicações que requerem respostas em tempo real, como veículos autónomos, automação industrial, e cidades inteligentes (smart cities).

Maior segurança na cloud

A segurança do armazenamento de dados baseada em cloud tem avançado dramaticamente em anos recentes, e continuará a melhorar. Para além disso, o edge computing significa que menos dados estão centralizados no armazenamento da cloud. Ao processar e armazenar alguns dos dados numa rede edge, a situação de ter “todos os ovos no mesmo cesto” é minimizada — a edge filtra dados que sejam redundantes, estranhos ou desnecessários. Apenas a informação mais crítica e importante é enviada para a cloud.

Redução de largura de banda

Tal como o edge computing ajuda a reduzir a latência, também consegue reduzir a largura de banda. Como estamos a processar, analisar e armazenar localmente mais informação, é menor a informação que estamos a enviar para a cloud. Esta redução em flow de dados (data flow) minimiza custos para o utilizador, visto que uma menor largura de banda significa upgrades menos frequentes ao armazenamento da cloud.

Envolvimento de machine learning & AI

O edge computing está a despoletar também o desenvolvimento de novas tecnologias como a edge AI (de Inteligência Artificial) e edge analytics. A edge AI envolve lançar modelos de machine learning em dispositivos edge, permitindo processamento de dados e tomada de decisão em tempo real, imprescindíveis para aplicações como veículos autónomos e drones, onde o processamento de informação tem de ser feito rápida e corretamente.

A edge analytics inclui o processamento de dados na borda da rede para gerar insights em tempo real, que podem ser usados para melhorar a eficiência operacional, e reduzir o tempo de paragem. Este approach é essencial para aplicações de manutenção preventiva, onde uma rápida detecção de potenciais falhas pode prevenir custos elevados de paragem e danos em equipamentos

Os desafios

No entanto, apesar de ser altamente promissor, este modelo apresenta ao mesmo tempo alguns problemas que não podem ser ignorados quando se trata de computação de ponta. Em certos cenários, continua ainda a fazer sentido optar por uma arquitetura de rede convencional:

Poder de processamento e capacidade de armazenamento limitados

Os dispositivos edge têm normalmente um poder de processamento e capacidade de armazenamento algo limitados, em comparação com centro de dados centralizados. Isto pode resultar em performance reduzida e tempos de resposta mais lentos para certas aplicações.

Questões de segurança

Assim como existem benefícios de segurança a nível da cloud, existem desafios de segurança a nível local. Os dispositivos edge encontram-se normalmente em espaços públicos ou localizações remotas, fazendo com que se tornem vulneráveis a ataques físicos ou cibernéticos. Assegurar a segurança destes dispositivos e os dados por eles recolhidos pode ser desafiante, especialmente se não estão bem protegidos.

Falta de estandardização

Neste momento, nao existe um approach estandardizado ao edge computing, o que significa que diferentes dispositivos e sistemas podem não conseguir comunicar uns com os outros. Isto pode levar a problema de compatibilidade e limitar a capacidade das organizações de aproveitar os benefícios do edge computing.

Criação de redundância

Num modelo de edge computing, um grande cluster central é trocado por muitas máquinas locais. Uma máquina de arestas substitui uma instância do aglomerado central. Porém, o modelo vai criando com frequência novas redundâncias que aumentam os custos – por exemplo, quando toca ao armazenamento, em vez de criar uma cópia central de cada ficheiro, uma rede edge pode manter uma cópia independente em cada nó de edge. No caso de pequenas redes edge, todas estas cópias adicionais podem criar redundância. Assim, com mais 100 nós de edge, é provável que o armazenamento seja cerca de 100 vezes mais caro. Isto pode ser limitado pelo armazenamento de dados apenas nos nós que são ativamente utilizados pelos utilizadores individuais – mas o problema da duplicação ainda não desaparece completamente. A certa altura, o custo disto começa a ter impacto no custo total.

Questões legais e de compliance

Em alguns países, o imposto sobre as vendas é cobrado sobre as compras online, noutros não. Além disso, nos EUA, por exemplo, existem regulamentos fiscais estatais individuais. Em muitos casos, os impostos aplicáveis dependem da localização física do hardware sobre o qual o processamento de dados é efetuado. A informática de ponta pode aumentar a confusão sobre quais as leis aplicáveis. Os impostos são uma questão complexa que as partes interessadas devem abordar antes de decidir utilizar a computação de ponta.

Proteção de dados

Tanto a localização dos utilizadores como a localização dos dados estão sujeitas às leis de proteção de dados. Alguns países são abrangidos pelo âmbito do GDPR, outros por outras estruturas. Existem também regulamentos como a HIPAA, que lidam especificamente com gestão de dados de dispositivos médicos. Para as empresas, isto significa que terão de analisar quais as leis e regulamentos que se aplicam aos respetivos nós de edge – e descobrir como assegurar o cumprimento dos mesmos. Isto é especialmente verdade quando os utilizadores e servidores estão localizados em diferentes países. Uma solução mais simples seria operar todos os nós de edge numa só jurisdição.

Em conclusão, a crescente relevância do edge computing está a revolucionar a maneira como pensamos sobre computação e processamento de dados. Resta analisar as vantagens e desvantagens, e perceber se esta é uma tecnologia relevante e benéfica para o nosso caso em particular.

Categorias
Inovação RH

A Inteligência Artificial como um aliado no recrutamento de TI

A inteligência artificial tem vindo a transformar o approach das empresas relativamente a muita coisa nos últimos meses (e anos), e o recrutamento em TI não fica de fora. Com uma crescente procura por profissionais de IT altamente qualificados, os recrutadores de TI sentem igualmente uma crescente pressão para encontrar e atrair profissionais de topo de forma rápida e eficiente. Felizmente, a IA pode ajudar a agilizar vários aspetos do processo de recrutamento, permitindo assim aos recrutadores focar-se na construção e manutenção de relações com os candidatos, e em tomar as melhores decisões estratégicas de recrutamento.

Inteligência Artificial Recrutamento IT - Os potenciais usos da IA podem ser aplicados a virtualmente qualquer fase do processo de recrutamento
Na imagem, podemos ver o potencial da IA em todas as fases do recrutamento. Fonte: aihr.com

“Work smarter, not harder”

Um dos maiores benefícios da Inteligência Artificial quando aplicada ao recrutamento, é a capacidade de automatizar tarefas demoradas, tal como a triagem de CVs, e o “match” entre candidatos e as vagas corretas. Em vez de navegar manualmente por centenas de currículos, as ferramentas de recrutamento que utilizam IA podem ajudar a analisar esses currículos e descrições de funções para identificar os candidatos mais qualificados para determinada vaga. Isto pode poupar uma quantidade significativa de tempo ao recrutador, permitindo-lhe mais dedicação a outras tarefas mais importantes e que requeiram mais atenção.

Alguns exemplos de ferramentas de triagem de candidatos são Pomato, Ceipal ou Textkernel. Estas ferramentas usam NLP (Natural Language Processing), deep learning, e machine learning para fazer uma triagem de currículos.

Enriquecer relações com candidatos

Outro benefício da Inteligência Artificial na optimização da vida do recrutador, é melhorar a experiência da relação com os candidatos. Certas ferramentas de chat que utilizam IA podem ser usadas para comunicar certas informações simples como updates no processo de recrutamento, permitindo que os candidatos estejam sempre informados e que se sintam menos “abandonados” no processo. Os chatbots podem também ajudar no agendamento de calls e entrevistas, no processo de follow-up com candidatos, que leva a uma experiência mais positiva no geral.

Calendly e X.AI são duas ferramentas que ajudam na seleção dos melhores slots horários para um agendamento de entrevistas mais eficiente.

Mya, Olivia, e Jobpal são 3 exemplos de chatbots que utilizam NLP (Natural Language Processing) e machine learning. Estes chatbots conseguem iniciar conversas com candidatos e executar uma pré-seleção. Estes bots são até capazes de, existindo já uma base de dados de apoio, iniciar uma cadeia de conversação com candidatos passivos para saber o seu potencial interesse numa vaga. Candidatos que estejam interessados podem também fazer uma pré-entrevista, respondendo a questões básicas ou avançadas, pré-definidas.

Tomada de decisões informadas

Para além de melhorar a relação e interação com candidatos, a Inteligência Artificial pode também ajudar os recrutadores a tomar decisões mais informadas. Ao analisar a informação de determinado candidato, as ferramentas de recrutamento de Inteligência Artificial podem ajudar a identificar padrões e tendências que poderão não ser imediatamente óbvios ao recrutador humano. Por exemplo, estas ferramentas podem ajudar a identificar candidatos mais propícios a ficar com um cliente a longo prazo, ou que se encaixem melhor a nível cultural. Isto leva a que se tomem decisões de recrutamento mais estratégicas e que a longo prazo se baixem taxas de turnover.

Um exemplo de uma ferramenta IA que ajuda a tomar decisões informadas é a HireVue. Esta ferramenta usa IA para analisar vídeos de entrevistas, incluindo expressões faciais, linguagem corporal e escolha de palavras para chegar a conclusões sobre as soft skills, personalidade e encaixe cultural de um candidato. A ferramenta faz também uso de NLP (Natural Language Processing) para analisar as respostas do candidato e criar um sumário das suas skills e qualificações. Isto ajuda a que o recrutador tome decisões baseadas em dados específicos, especialmente no caso de haver candidatos com perfis semelhantes e a escolha não seja óbvia.

Recrutamento mais proativo

A inteligência Artificial pode ainda ajudar os recrutadores de TI a serem mais proativos na sua procura por candidatos. Ao analisar atividade online e perfis de redes sociais, as ferramentas de recrutamento baseadas em IA podem ajudar a identificar mais rapidamente potenciais candidatos que não estejam ativamente à procura de novos desafios, mas que encaixem particularmente bem numa determinada vaga. Isto permite aos recrutadores chegar mais facilmente a candidatos que provavelmente não se teriam sequer candidatado à posição, o que aumenta também a lista de candidatos, e consequentemente, a probabilidade de encontrar a pessoa certa para aquela função.

A Fetcher, tal como o nome indica, “vai buscar” potenciais candidatos. É uma ferramenta que pesquisa e identifica candidatos através de “matches” de palavras-chave. Com algum tempo, a Inteligência Artificial aprende as preferências de uma empresa e melhora cada vez mais as suas capacidades de identificar o candidato certo.

“AI recruiting software will even learn what messaging used by the recruiter yielded the highest response with candidates. It will then automate these behaviors allowing recruiters to spend time on what matters most, relationships and revenue.”

-Leoforce blog

No geral, a Inteligência artificial demonstra um enorme potencial de vir a revolucionar a forma como os recrutadores de IT vêm e organizam o seu trabalho diariamente. Ao automatizar tarefas que consomem uma grande parte do seu tempo, ao melhorar a relação com candidatos, ao ajudar os recrutadores a tomar decisões mais informadas, a IA pode certamente ajudar os recrutadores de TI a encontrar e atrair talento altamente qualificado rápida e eficientemente. A procura por profissionais de TI não mostra sinais de abrandar, e a utilização deste tipo de ferramentas brevemente será uma realidade que poucos recrutadores poderão ignorar.