Categorias
Inovação Inteligência Artificial

Programar em IA: Escolher as melhores linguagens & ferramentas

A Inteligência Artificial (IA) tem vindo a revolucionar várias indústrias, da saúde à banca, e programar tem um papel importantíssimo na implementação de aplicações IA. Quer sejas um novato ou um developer experenciado, à procura de explorar o mundo da IA, escolher as linguagens de programação e ferramentas corretas é essencial. Em baixo, vamos identificar as linguagens de programação mais populares para o desenvolvimento de IA, as suas características principais, e outras considerações importantes.

 Python

Python

Python é geralmente considerada uma das linguagens mais populares para programação IA. A sua simplicidade, facilidade de leitura e bibliotecas extensas fazem dela uma ótima escolha. Python oferece frameworks poderosos como TensorFlow e PyTorch, que simplificam o desenvolvimento e a implementação do modelo IA. Para além disso, bibliotecas como NumPy e Pandas providenciam dados de manipulação e capacidades de análise extremamente eficientes, que são essenciais para tarefas IA.

Melhores linguagens IA - R

R

R é outra linguagem normalmente usada em IA, particularmente em modelos estatísticos e análise de dados. Oferece uma vasta coleção de pacotes desenhados especificamente para tarefas de machine learning e data science. A sintaxe da linguagem R é intuitiva e permite uma fácil exploração e visualização dos dados, tornando-se assim bastante adequada para modelos estatísticos e análise preditiva.

Java

Java

Java é uma linguagem versátil usada num variado leque de aplicações, incluindo o desenvolvimento IA. Embora não seja uma das primeiras escolhas para IA devido à sua verbosidade, a linguagem Java oferece robustez, independência de plataforma e escalabilidade, sendo uma boa opção para sistemas IA de grande escala. As bibliotecas de Java como Deeplearning4j e DL4J incluem ferramentas para deep learning e redes neurais artificiais.

Melhores linguagens IA - C++

C++

C++ é uma linguagem poderosa e eficiente, bastante usada em IA, especialmente para aplicações pesadas a nível de desempenho. O seu controlo e a sua rapidez de baixo nível tornam-na ideal para a implementação de algoritmos e optimização de código. As bibliotecas mais populares como OpenCV e CUDA aproveitam o melhor da linguagem C++ aplicada à visão computacional e programação GPU, respetivamente.

Matlab

MATLAB

MATLAB é uma linguagem de programação comumente usada nos campos científico e de engenharia, incluindo IA. Oferece um rico conjunto de funções e toolboxes embutidas para análise de dados, visualização de dados e machine learning. As capacidades matemáticas avançadas da linguagem MATLAB tornam-na particularmente útil para o desenvolvimento de algoritmos e protótipos.

Outras considerações

Para além das linguagens de programação, existem outros fatores a ter em consideração no desenvolvimento IA:

Frameworks:

Considera utilizar frameworks AI populares como TensorFlow, PyTorch, ou scikit-learn, que oferecem funções pré-feitas e APIs para um eficiente desenvolvimento de modelos IA.

Preparação de dados

A limpeza e o pré-processamento são passos cruciais em IA. As bibliotecas como Pandas e scikit-learn dispõem de ferramentas para a manipulação de dados, feature engineering e normalização de dados.

Seleção de algoritmos

É importante compreender os diferentes algoritmos de IA, tal como as redes neurais artificiais, árvores de decisão e máquina de vetores de suporte, para conseguir escolher o approach mais sustentável para o teu problema específico.

Desenvolvimento colaborativo

Tira partido de sistemas de controlo de versão como o git e de plataformas colaborativas como o GitHub para facilitar a colaboração em equipa e a gestão de código.

Melhores linguagens de IA - Ferramentas: git & GitGub
git & GitGub

Em conclusão, a programação está no núcleo do desenvolvimento em IA e escolher a linguagem e ferramenta certas é essencial para o sucesso. Python, R, Java, C++ e MATLAB são linguagens populares, utilizadas para diferentes domínios em IA.

Paralelamente, frameworks, técnicas de preparação de dados, seleção de algoritmos e ferramentas de colaboração têm um papel fulcral na construção de sistemas de IA eficientes. Ao tirar partido das linguagens e ferramentas mais apropriadas, os developers conseguem desbloquear o imenso potencial da IA e criar soluções inovadoras em virtualmente qualquer indústria.

Categorias
Inovação RH

A Inteligência Artificial como um aliado no recrutamento de TI

A inteligência artificial tem vindo a transformar o approach das empresas relativamente a muita coisa nos últimos meses (e anos), e o recrutamento em TI não fica de fora. Com uma crescente procura por profissionais de IT altamente qualificados, os recrutadores de TI sentem igualmente uma crescente pressão para encontrar e atrair profissionais de topo de forma rápida e eficiente. Felizmente, a IA pode ajudar a agilizar vários aspetos do processo de recrutamento, permitindo assim aos recrutadores focar-se na construção e manutenção de relações com os candidatos, e em tomar as melhores decisões estratégicas de recrutamento.

Inteligência Artificial Recrutamento IT - Os potenciais usos da IA podem ser aplicados a virtualmente qualquer fase do processo de recrutamento
Na imagem, podemos ver o potencial da IA em todas as fases do recrutamento. Fonte: aihr.com

“Work smarter, not harder”

Um dos maiores benefícios da Inteligência Artificial quando aplicada ao recrutamento, é a capacidade de automatizar tarefas demoradas, tal como a triagem de CVs, e o “match” entre candidatos e as vagas corretas. Em vez de navegar manualmente por centenas de currículos, as ferramentas de recrutamento que utilizam IA podem ajudar a analisar esses currículos e descrições de funções para identificar os candidatos mais qualificados para determinada vaga. Isto pode poupar uma quantidade significativa de tempo ao recrutador, permitindo-lhe mais dedicação a outras tarefas mais importantes e que requeiram mais atenção.

Alguns exemplos de ferramentas de triagem de candidatos são Pomato, Ceipal ou Textkernel. Estas ferramentas usam NLP (Natural Language Processing), deep learning, e machine learning para fazer uma triagem de currículos.

Enriquecer relações com candidatos

Outro benefício da Inteligência Artificial na optimização da vida do recrutador, é melhorar a experiência da relação com os candidatos. Certas ferramentas de chat que utilizam IA podem ser usadas para comunicar certas informações simples como updates no processo de recrutamento, permitindo que os candidatos estejam sempre informados e que se sintam menos “abandonados” no processo. Os chatbots podem também ajudar no agendamento de calls e entrevistas, no processo de follow-up com candidatos, que leva a uma experiência mais positiva no geral.

Calendly e X.AI são duas ferramentas que ajudam na seleção dos melhores slots horários para um agendamento de entrevistas mais eficiente.

Mya, Olivia, e Jobpal são 3 exemplos de chatbots que utilizam NLP (Natural Language Processing) e machine learning. Estes chatbots conseguem iniciar conversas com candidatos e executar uma pré-seleção. Estes bots são até capazes de, existindo já uma base de dados de apoio, iniciar uma cadeia de conversação com candidatos passivos para saber o seu potencial interesse numa vaga. Candidatos que estejam interessados podem também fazer uma pré-entrevista, respondendo a questões básicas ou avançadas, pré-definidas.

Tomada de decisões informadas

Para além de melhorar a relação e interação com candidatos, a Inteligência Artificial pode também ajudar os recrutadores a tomar decisões mais informadas. Ao analisar a informação de determinado candidato, as ferramentas de recrutamento de Inteligência Artificial podem ajudar a identificar padrões e tendências que poderão não ser imediatamente óbvios ao recrutador humano. Por exemplo, estas ferramentas podem ajudar a identificar candidatos mais propícios a ficar com um cliente a longo prazo, ou que se encaixem melhor a nível cultural. Isto leva a que se tomem decisões de recrutamento mais estratégicas e que a longo prazo se baixem taxas de turnover.

Um exemplo de uma ferramenta IA que ajuda a tomar decisões informadas é a HireVue. Esta ferramenta usa IA para analisar vídeos de entrevistas, incluindo expressões faciais, linguagem corporal e escolha de palavras para chegar a conclusões sobre as soft skills, personalidade e encaixe cultural de um candidato. A ferramenta faz também uso de NLP (Natural Language Processing) para analisar as respostas do candidato e criar um sumário das suas skills e qualificações. Isto ajuda a que o recrutador tome decisões baseadas em dados específicos, especialmente no caso de haver candidatos com perfis semelhantes e a escolha não seja óbvia.

Recrutamento mais proativo

A inteligência Artificial pode ainda ajudar os recrutadores de TI a serem mais proativos na sua procura por candidatos. Ao analisar atividade online e perfis de redes sociais, as ferramentas de recrutamento baseadas em IA podem ajudar a identificar mais rapidamente potenciais candidatos que não estejam ativamente à procura de novos desafios, mas que encaixem particularmente bem numa determinada vaga. Isto permite aos recrutadores chegar mais facilmente a candidatos que provavelmente não se teriam sequer candidatado à posição, o que aumenta também a lista de candidatos, e consequentemente, a probabilidade de encontrar a pessoa certa para aquela função.

A Fetcher, tal como o nome indica, “vai buscar” potenciais candidatos. É uma ferramenta que pesquisa e identifica candidatos através de “matches” de palavras-chave. Com algum tempo, a Inteligência Artificial aprende as preferências de uma empresa e melhora cada vez mais as suas capacidades de identificar o candidato certo.

“AI recruiting software will even learn what messaging used by the recruiter yielded the highest response with candidates. It will then automate these behaviors allowing recruiters to spend time on what matters most, relationships and revenue.”

-Leoforce blog

No geral, a Inteligência artificial demonstra um enorme potencial de vir a revolucionar a forma como os recrutadores de IT vêm e organizam o seu trabalho diariamente. Ao automatizar tarefas que consomem uma grande parte do seu tempo, ao melhorar a relação com candidatos, ao ajudar os recrutadores a tomar decisões mais informadas, a IA pode certamente ajudar os recrutadores de TI a encontrar e atrair talento altamente qualificado rápida e eficientemente. A procura por profissionais de TI não mostra sinais de abrandar, e a utilização deste tipo de ferramentas brevemente será uma realidade que poucos recrutadores poderão ignorar.